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Streams and rivers host a significant portion of Earth’s biodiversity and pro-
vide important ecosystem services for human populations. Accurate information
regarding the status and trends of stream resources is vital for their effective conser-
vation and management. Most statistical techniques applied to data measured on
stream networks were developed for terrestrial applications and are not optimized
for streams. A new class of spatial statistical model, based on valid covariance
structures for stream networks, can be used with many common types of stream
data (e.g., water quality attributes, habitat conditions, biological surveys) through
application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The
spatial statistical network models account for spatial autocorrelation (i.e., nonin-
dependence) among measurements, which allows their application to databases
with clustered measurement locations. Large amounts of stream data exist in many
areas where spatial statistical analyses could be used to develop novel insights,
improve predictions at unsampled sites, and aid in the design of efficient monitor-
ing strategies at relatively low cost. We review the topic of spatial autocorrelation
and its effects on statistical inference, demonstrate the use of spatial statistics with
stream datasets relevant to common research and management questions, and
discuss additional applications and development potential for spatial statistics on
stream networks. Free software for implementing the spatial statistical network
models has been developed that enables custom applications with many stream
databases. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Reliable scientific information is needed for streams
and rivers because they host a disproportion-

ate amount of the Earth’s biodiversity1,2 and provide
important ecosystem services for human populations.3
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That need will continue to grow as streams experi-
ence ongoing pressure from human development and
climate change,4,5 even as budgets for research, conser-
vation, and management of aquatic resources remain
limited. Doing more with less will be an ongoing
theme, and developing better information for deci-
sion making is key to efficiency. One attractive option
is simply developing new information from existing
databases because it obviates the expenses associated
with collecting new data. Advances in remote sensing,
bioinformatics, computation, and data storage have
dramatically increased the amount of stream data in
recent decades6,7 and large databases now exist in
many areas that could be profitably mined (Figure 1).
As data densities increase, however, measurement
locations occur closer in space, the assumption in clas-
sical statistics of independence among observations
may be violated, and poor parameter estimation and
statistical inference could result.12

Classical statistical analyses were developed
in the early 20th century to provide probabilistic
inference on population parameters (e.g., means,
totals, proportions) in study systems where the spatial
arrangement of measurements was not important.13 In
field settings where spatial gradients sometimes caused
parameter bias, stratified random sampling designs
were developed to control for the nuisance variation
caused by spatial effects.14 It was later recognized
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FIGURE 1 | Example databases with spatially clustered measurements that could be modeled using spatial statistical techniques. Stream
temperature measurements from the Boise River in central Idaho (a; Source: Ref 8), water quality measurements across Maryland (b; Source: Ref 9),
fish sampling locations across the western U.S. (c; modified Source: Ref 10), and (d) nitrate measurements from the Meuse River in France (Source:
Ref 11).

that space serves a vital role in structuring natural
systems that is important to understand, which led
to the development of spatial statistics and spatial
ecology.15,16 Spatial analyses accommodate, and often
benefit from, nonindependence among observations
and now provide an important inferential toolbox for
research and management in terrestrial ecosystems.17

The above considerations are equally relevant to data
measured on stream networks,18 but these systems
have received much less attention than terrestrial
systems. As a result, statistical techniques are usually
developed for the latter and are only later adopted for
use with streams. However, streams are fundamentally
different from their terrestrial counterparts because
they consist of directed networks that channel flows
of energy, materials, and information through narrow
corridors within terrestrial landscapes.19,20 Statistical
techniques need to account for those properties if they
are to be optimized for stream data.

Theory for a generalizable class of spatial
stream-network model (SSNM) has recently been
developed on the basis of valid covariance structures
for stream networks.21,22 Those covariance struc-
tures account for the unique properties of stream
networks such as a branching structure, directed
flow, longitudinal connectivity, and abrupt changes
near tributary confluences.23 SSNMs can be used
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with most types of stream survey data (e.g., water
chemistries, habitat conditions, biological attributes)
through application of several statistical distribu-
tions (e.g., Gaussian, binomial, Poisson). The use of
SSNMs is growing8,9,11,24–29 and free software has
been developed that makes custom implementation of
the models possible with many databases.30,31 Because
SSNMs have gone rapidly from theory to application,
however, relatively few researchers are aware of their
existence, and fewer yet have received formal training
in their application or understand their potential.
In areas where significant stream databases already
exist, application of the spatial models may provide
novel insights, increased predictive accuracy, better
parameter estimates, and facilitate the development of
new information at relatively low cost. In areas where
less stream data exist, the SSNMs and associated sim-
ulation techniques can be used to develop sampling
strategies that are optimized for different purposes
on stream networks,32,33 and which sometimes dif-
fer from current design recommendations that are
influenced by a legacy of development for terrestrial
systems.

In this paper, we briefly review the topic of
spatial autocorrelation (i.e., nonindependence among
observations) and its effect on statistical inference,
and provide examples demonstrating how inference
may be improved through application of the SSNMs
to common datasets and research questions. The goal
is not an in-depth treatment of any one topic but to
provide interested readers with a sense of the possi-
bilities and to identify resources for pursuing these
possibilities in more detail. Unless otherwise noted,
all subsequent analyses were performed using the SSN
package31,34 for R35 and data preprocessing occurred
in ArcGIS using two custom toolsets; STARS (Spatial
Tools for the Analysis of River Systems)30 and FLoWS
(Functional Linkages of Watersheds and Streams).36

Data and scripts for running similar analyses are
contained in the SSN package and available at the
SSN/STARS website.34

WHAT IS SPATIAL
AUTOCORRELATION AND WHY DOES
IT MATTER?

Spatial autocorrelation is the tendency for measure-
ments of an attribute to show a pattern of similarity
relative to the distance separating them. Most fre-
quently, closer measurements are more similar, which
is referred to as positive autocorrelation. Mechanisms
causing positive autocorrelation in streams could
include local habitat similarities that result in high fish
densities in adjacent pools37 or turbulent stream flows

mixing water chemistries to create similar values over
the span of several kilometers.25,26 In fewer instances,
negative autocorrelation occurs wherein greater dis-
similarity exists among nearby measurements. A
territorial fish, for example, excludes others from
its immediate vicinity and causes negative spatial
correlations at certain distances. Directly measuring
or modeling the factors that cause those spatial pat-
terns is desirable but often difficult or impossible, so
methods that address spatial autocorrelation provide
a useful means of estimation in many instances.

There are several ways to describe and visualize
spatial autocorrelation17 but the semivariance is one
of the most common. Semivariance is the average
variation between measurement values separated by
some intervening distance38 and has the following
empirical estimator:

𝛾
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Where, 𝛾(h) is the semivariance for distance lag h, N(h)
is the number of data pairs (xi, xj) separated by the dis-
tance h, ||xi − xj || is the distance between locations
xi and xj, c(h) is the interval around h (chosen to be
mutually exclusive and exhaustive so that all distances
h fall into one interval), and z(xi) is the data value
at location xi. A plot of semivariance values relative
to distance is called a semivariogram. When no spa-
tial autocorrelation occurs in a set of measurements, a
semivariogram shows no trend (Figure 2). If positive
autocorrelation is present, however, the semivariance
values are small near the origin and increase at greater
distances.16 When nonzero semivariances occur at the
shortest distances, it represents spatial variation at res-
olutions smaller than the finest sampling grain and
measurement errors, and is referred to as the ‘nugget
effect’.18,38 In some cases, semivariance values reach
an asymptote—known as the ‘sill’, which represents
the variance, or dissimilarity, in uncorrelated data.
The distance where the sill is reached is called the
‘range’, and it indicates how quickly spatial auto-
correlation decays with distance. At distances greater
than the range, measurements are considered to be
uncorrelated and no longer contain redundant infor-
mation. Semivariograms developed for fish counts
from two adjacent streams clearly show many of
these characteristics, including the absence of spatial
autocorrelation as indicated by the lack of a trend in
one stream (Figure 2).19

Classical statistical techniques assume that each
measurement is independent from others and con-
tains non-redundant information. If measurements are
spatially autocorrelated, however, then redundancy
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FIGURE 2 | Counts of cutthroat trout in habitat units along two forks of Hinkle Creek in western Oregon (a; Source: Ref 19). Semivariograms
calculated from counts in the South Fork (black dots) show evidence of spatial autocorrelation, but there is no evidence of autocorrelation in the
North Fork (b; red dots).

exists and the database contains less information
than the number of measurements implies. Failure
to account for this redundancy means that tests
of statistical significance are too liberal and type I
errors will occur more frequently than the speci-
fied 𝛼-level because standard error estimates are arti-
ficially small.12,39 Parameter estimates may also be
biased because measurements are spatially clustered
and over- or under-represent conditions in some areas.
Because of the challenges that autocorrelation poses,
classical experimental design techniques and environ-
mental monitoring programs go to some length to
randomize measurements and allocate samples in a
spatially balanced manner.40 But in many field stud-
ies, or where databases have been aggregated from
multiple sources, site selection is not possible or is dif-
ficult to implement at scales large enough to minimize
autocorrelation. A stream researcher may then either
ignore spatial autocorrelation or dismiss it as unim-
portant, but this may discard important information
about stream attributes and decrease the accuracy and
validity of statistical inferences. A better choice is to
use models that accommodate spatial autocorrelation.

A COVARIANCE STRUCTURE
FOR STREAM DATA

A spatial statistical model is simply an extension of the
basic linear model that is commonly used in ecological
studies. The linear model has the form y= 𝛽X+ 𝜀,
where the dimension of the response variable y, is
an n× 1 vector, and where n represents the total
number of observations. The relationship between the
response variable and predictors is modeled through
the design matrix X and parameters 𝛽. The linear
model is considered nonspatial because one of its
main assumptions is that the random errors, 𝜀, are

TABLE 1 Example Covariance Matrices for Nonspatial Statistical
Model and Spatial Statistical Model

Nonspatial Model

Covariance

Spatial Model

Covariance

Site 1 2 3 1 2 3

1 𝜎11 0 0 𝜎11 𝜎12 𝜎13

2 0 𝜎22 0 𝜎21 𝜎22 𝜎23

3 0 0 𝜎33 𝜎31 𝜎32 𝜎33

The assumption in the nonspatial model is that measurements are independent
and off-diagonal elements in the matrix are set to zero. A spatial statistical
model makes no such assumption and instead estimates the covariance
between pairs of measurements based on spatial distance relationships
described with autocovariance functions.

independent, and so the variance of 𝜀 (var(𝜀)) is equal
to 𝜎2I, where I is the n×n identity matrix. In a
spatial statistical model, the independence assumption
is relaxed and values are allowed to be correlated,
so var(𝜀)=𝚺 (Table 1). The general formulation of
the covariance matrix 𝚺 has too many parameters to
estimate, so the nugget, sill, and range parameters are
estimated in an autocovariance function to describe
the spatial relationships among elements in 𝚺. That
provides a means of estimating the covariance between
any two sets of locations and reduces the number of
parameter estimates for 𝚺 to 3 from n(n+ 1)/2.

In traditional spatial statistics, distance is mea-
sured in Euclidean space, which is the straight-line dis-
tance between two sites. When working with stream
networks, however, it may be more appropriate to
use along-channel distance to model autocovariance
because movements of aquatic organisms and the
transport of materials are often constrained to
the network.19,20 Along-channel distance can be
treated symmetrically as the network distance
between two sites19 but depending on the type of
data, important distinctions may exist between sites
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FIGURE 3 | Flow-connected (a and b) and flow-unconnected (c and
d) spatial relationships on a stream network (Source: Ref 23).
Moving-average functions for tail-up (a and c) and tail-down (b and d)
relationships are shown in gray. Note that tail-up models restrict
autocorrelation to flow-connected locations, whereas tail-down models
permit correlation between flow-connected and flow-unconnected
locations.

with flow-connected spatial relationships and those
that are flow-unconnected. Sites are considered
flow-connected if water from an upstream site flows
past a downstream site (Figure 3(a) and (b)). Sites are
considered flow-unconnected if some upstream move-
ment would be required to facilitate a connection
(Figure 3(c) and (d)). Flow-connected relationships
may be useful for stream attributes characterized by
passive downstream diffusion such as water chemistry,
sediment, or temperature. Biological entities such as
fish or macroinvertebrates that may move both down-
stream and upstream may be better represented by
flow-unconnected relationships, or a combination of
flow-unconnected and connected spatial relationships
(discussed below).

Two classes of autocovariance functions have
been developed to represent spatial relationships in
streams; tail-up models and tail-down models.23,41

The models are based on moving-average (MA)
constructions and assume that the stream network is
dendritic and not braided. In the tail-up models, the
MA function points in the upstream direction and
correlation is only permitted between flow-connected
sites (Figure 3(a) and (c)). Spatial weights are used
to split the tail-up MA function at confluences based
on flow volume, watershed area, or other relevant

attributes, which allows tributary influences on down-
stream conditions to be accurately represented. In
a tail-down model, the MA function points in the
downstream direction and correlation is permitted
between both flow-connected and flow-unconnected
sites (Figure 3(b) and (d)). Several models may be
used to represent tail-up or tail-down autocovariance
functions, including the linear-with-sill, Mariah, expo-
nential, Epanechnikov, and spherical models.11,41 An
autocovariance function can be chosen based on the
properties of a stream attribute or using model selec-
tion techniques.11 Spatial statistical models are gener-
ally robust against mis-specifying the autocovariance
function42–44 although the topic has not been directly
addressed for SSNMs.

Autocovariance functions based on stream dis-
tance and network topology are useful in most
instances, but spatial patterns in stream data can also
be caused by linkages with the terrestrial landscape
and atmosphere.20 As a result, factors associated with
climate, geology or landcover may be better repre-
sented by Euclidean distance and several functions are
available for this.45 Of particular note, autocovariance
functions may be combined (e.g., flow-connected and
Euclidean relationships) within a mixed model using
a variance component approach that weights the con-
tribution of each function to the overall variation.23,41

That produces a flexible covariance structure which
simultaneously accounts for many types of spatial
relationships and avoids the need to choose a specific
function.

DESCRIPTION, ESTIMATION, AND
PREDICTION ON STREAM NETWORKS

The Torgegram: A Semivariogram for Data
on Stream Networks
As described previously, the semivariogram is a useful
tool for exploring and describing spatial patterns
in data.46 For example, counts of cutthroat trout
(Oncorhynchus clarki) along two forks of Hinkle
Creek in Oregon showed clear spatial patterns when
described by semivariograms (Figure 2(b)). Cutthroat
trout in the South Fork were correlated to a range of
∼0.5 km and exhibited large overall spatial variation
(large sill value). That contrasts to counts on the North
Fork, which were less variable and had no clearly
discernible range. Those patterns probably reflect
some aspects of the habitats in the two forks, which
could form the basis for more detailed investigations
to understand the relevant processes.47

As useful as conventional semivariograms are,
they may obscure important spatial relationships in
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FIGURE 4 | Torgegrams for electrical conductivity (b) and pH (c) developed from water quality measurements across a stream network in
southeast Queensland, Australia (a) Symbol sizes are proportional to the number of data pairs averaged for each value. (Reprinted with permission
from Ref 41. Copyright 2010 American Statistical Association)

streams due to differences in flow connectivity, so the
Torgegram was developed specifically for visualizing
spatial patterns in stream data.20,31 A Torgegram splits
semivariances into categories based on flow-connected
and flow-unconnected relationships and plots these
separately. Torgegrams for stream pH and electrical
conductivity measurements across a network in south-
east Queensland, Australia,41 are shown in Figure 4.
The Torgegrams were based on residuals from an
SSNM that included several predictors and used a
mixed-model autocovariance structure consisting
of a tail-up exponential function and a tail-down
linear-with-sill function. Conductivity showed
increasing semivariances for both flow-connected and
flow-unconnected sites (Figure 4(b)), which indicated
that spatial autocorrelation occurred to distances of
at least 100 km in this dataset (maximum value on
the x-axis). The pH Torgegram showed a similar
pattern for flow-connected sites but no spatial trend
among flow-unconnected sites (Figure 4(c)). Those
patterns suggest that important predictors affecting
flow-connected relationships may have been missing
from the regression model or that factors were oper-
ating at spatial extents larger than the stream network
to create system-wide gradients. The lack of a spatial

trend in the pH residuals at flow-unconnected sites
suggests that this water chemistry attribute exhibited
different spatial properties than conductivity. It may
also have been the case that a tail-up model, which
restricts correlation to flow-connected sites, would
have been more suitable than a tail-down model in
this instance.

Parameter Estimation and Significance Tests
A goal in many analyses [e.g., analysis of vari-
ance (ANOVA), analysis of covariance, regression]
is parameter estimation wherein relationships are
described between one or more predictor variables
and a response variable such as fish or macroinverte-
brate abundance, habitat conditions, or water quality.
Multiple linear regression is commonly used for this
purpose,48 wherein elements in the parameter vector
𝛽 from the linear model are estimated to describe how
much a response variable changes relative to a 1-unit
change in a predictor variable. An SSNM regression
not only provides similar estimates but also accounts
for spatial structure in residual errors using an auto-
covariance function and often improves parameter
estimates.22,31
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TABLE 2 Comparison of Parameter Estimates and Summary Statistics for Nonspatial and Spatial Multiple Regression Models Predicting Maximum
Summer Stream Temperature across a 2500 km River Network in Central Idaho

Model Predictor b (SE) p-value t p AIC r2 RMSPE (∘C)

Nonspatial Intercept 31.2 (0.918) p< 0.01 34.1 6 3912 0.46 2.99

Elevation (100 m) −0.754 (0.0512) p< 0.01 −14.7

Glacial valley (%) −3.04 (0.574) p< 0.01 −5.29

Valley bottom (%) 3.06 (0.631) p< 0.01 4.85

Stream slope (%) −6.62 (2.92) p= 0.02 −2.27

Contributing area (100 km2) 0.124 (0.0048) p= 0.01 2.58

Spatial Intercept 30.5 (1.69) p< 0.01 18.0 13 3161 0.85 1.58

Elevation (100 m) −0.767 (0.0881) p< 0.01 −8.70

Glacial valley (%) −1.51 (0.797) p= 0.06 −1.89

Valley bottom (%) 2.95 (0.645) p< 0.01 4.58

Stream slope (%) −0.0929 (3.57) p= 0.98 −0.03

Contributing area (100 km2) 0.0495 (0.0864) p= 0.57 0.57

To illustrate how spatial autocorrelation may
adversely affect parameter estimation, we com-
pared results from nonspatial and SSNM regressions
applied to a dataset consisting of 780 stream temper-
ature measurements across a 2500 km river network
(Figure 1(a)). The response variable was maximum
summer stream temperature and predictor variables
were elevation, stream slope, size of the upstream
watershed, valley bottom width, and proportion
of the watershed that was previously glaciated.8

Parameter estimates were derived using maximum
likelihood estimation. In the SSNM, a mixed-model
autocovariance structure was used,41 which consisted
of exponential tail-up, exponential Euclidean, and
linear-with-sill tail-down components.8 Model results
were compared using the spatial Akaike Information
Criterion (AIC),49,50 which penalizes for the number
of parameters in the autocovariance function (seven in
the mixed-model structure) along with parameters for
the predictors. The r2 and root mean square predic-
tion error (RMSPE) based on observed temperatures
and leave-one-out cross-validation predictions were
also calculated.

Results for the SSNM and nonspatial regression
models provide several interesting contrasts (Table 2).
First, parameter estimates for all predictor variables
in the nonspatial regression model were statisti-
cally significant (p-value< 0.05). In the spatial model,
however, only two of five predictors were signifi-
cant, which suggested several type I errors (i.e., false
detection of an effect) occurred in the nonspatial
model. Second, the magnitude of the parameter esti-
mates changed considerably for three of the predictors
(glacial valley, stream slope, and contributing area),

suggesting the strong influence of values at measure-
ment sites clustered within a subset of the network
(Figure 1(a)). Third, measures of overall model per-
formance indicated the SSNM was a clear improve-
ment over the nonspatial model. The AIC value was
751 points lower for the spatial model (a difference
of 2 AIC points is often used as indication of a bet-
ter model),51 despite inclusion of seven additional
parameters in the autocovariance function. Predictive
accuracy of the SSNM was also much better than
the nonspatial model, in part because parameter esti-
mates were more accurate, but mainly because use-
ful spatial structure in the residuals was modeled by
the autocovariance function. Differences between spa-
tial and nonspatial regression model results would be
smaller in databases with less spatial autocorrelation,
but knowing the size of these differences is difficult
without fitting both types of models.

Variance Decomposition and Spatial Effects
Variance decomposition is used to allocate the total
amount of variation associated with a response vari-
able to different sources, which provides insight about
the relative importance of key structuring processes.52

Those sources may include predictor variables that
represent spatial and temporal factors, interactions
between these factors, and residual error. In traditional
ANOVA settings, decomposition is done nonspatially
by partitioning the sums of squares among the sources
of variation included in the model (e.g., predictors and
residual error). Decompositions using SSNMs are sim-
ilar, but also represent spatial structure in model resid-
uals using the autocovariance function.
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FIGURE 5 | Variance decomposition of stream temperature data from the Snoqualmie River in western Washington (a). Bargraphs show the
proportion of total variation described by predictor variables, spatial structure modeled by the autocovariance function, and residual error for
nonspatial regression models (b) and spatial regression models (c).

The contrast between nonspatial and spatial
variance decompositions is illustrated using data from
30 temperature sensors that recorded measurements
every 30 min over a 1-year period in the Snoqualmie
River of western Washington (Figure 5). Wavelet
analysis53 was used to identify periodicities within the
temperature records that were then used as logical
summary periods. Accordingly, temperature measure-
ments were summarized based on intra- (1.5, 3, 6,
and 12 h) and inter-daily (1, 2, 4, and 8 days) peri-
ods. Nonspatial and SSNM regression models were
used to predict these metrics from elevation, discharge,
and percent commercial land use in a watershed. The
SSNM used an exponential tail-up autocovariance
function.

In the nonspatial regression models, the pre-
dictors explained only a small proportion of varia-
tion in intra-daily temperature summaries (12–15%),
approximately half the variation in inter-daily sum-
maries, and the remaining variation was allocated to
residual error (Figure 5(b)). Spatial regressions for
those same summaries, however, indicated that sig-
nificant proportions of the residual variation could
be spatially structured, especially with regards to
intra-daily summaries (Figure 5(c)). Those results sug-
gest that stream temperature patterns have a strong
spatial component over short periods, but it becomes
weaker over longer periods. More generally, this
example highlights the importance of accounting
for spatial effects beyond those directly attributable
to predictor variables. Spatial effects may, or may
not, be important but their exclusion could result
in a very different view of the study system. Also
worth noting is that the autocovarance structure

itself may be partitioned into tail-up, tail-down, and
Euclidean components when a mixed model is used
(see Appendix H in Ref 8).23 Examining the relative
contributions of the components could provide clues
about mechanisms driving stream patterns or addi-
tional predictors to consider in future models.

Predictions at Unsampled Locations
Stream and river networks comprise 100s to 10,000s
of kilometers, so direct measurements for most
attributes are too costly to obtain everywhere. An
attractive feature of regression models is their util-
ity for predicting a response variable at unsampled
locations. Predictions are made by multiplying the
model parameter estimates by the values of predictors
at unsampled locations. If predictions are made at
points placed systematically throughout a network,
semi-continuous maps showing the status of a stream
attribute can be developed. SSNMs make predictions
similarly, but also use information from the autoco-
variance function to improve predictive accuracy near
measurement sites. Those predictions are generated
using the universal kriging equation,54 which has
two parts; a prediction based on the linear regression
model and an adjustment for spatial autocorrelation.
Thus, the model predictors set the mean process for
an initial prediction, which is then adjusted based on
any information that nearby measurements provide.
Predictions may also be generated using ordinary
kriging basely solely on values of the response vari-
able, but this assumes that the average condition of
the response variable remains constant across the
study region. That assumption is often violated in
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FIGURE 6 | Kriged map of mean stream temperatures and prediction standard errors in the upper Bitterroot River of western Montana (a; Source:
Ref 57). Box in panel a highlights the area shown in panels b and c. Note that standard errors vary in size relative to sensor measurement locations in
the spatial model (b) but not in the nonspatial model (c).

nature, which makes the predictions less accurate than
those developed with universal kriging and predictor
information.55,56

An example of a universal kriging map for
a small network in western Montana is provided
in Figure 6. The map was made by applying an
SSNM to a large regional temperature database in
the northwest United States and then generating pre-
dictions at 1-km intervals (more details are provided
elsewhere57). The prediction map shows not only het-
erogeneous thermal conditions across the network,
but also the expected pattern of colder temperatures
in high-elevation streams trending to warmer con-
ditions in low-elevation rivers. Researchers are usu-
ally most interested in the patterns associated with
mean values at the prediction sites, but the spatial
models also provide important information about the
precision of these predictions. Note that the stan-
dard errors from the SSNM were small near measure-
ment sites and increased as the distance to a mea-
surement site increased (Figure 6(b)). That contrasted
with predictions from a nonspatial regression model
where the standard errors were homogenous regard-
less of network position (Figure 6(c)). Information
about prediction precision is useful for understanding

model uncertainty, and for determining where new
measurements could provide the most information.
Strategically targeting an array of those measurements
might also serve as the basis for monitoring designs
that effectively accommodated existing data.

Block-Kriging Estimates for Discrete Areas
It is often desirable to estimate totals and aver-
ages for stream attributes across an area (e.g., reach,
segment, or network) and then to make compar-
isons among different areas. Those estimates may be
obtained by using a spatial statistical technique called
block kriging,54,58 which the SSNMs now facilitate
on stream networks.20,31 To illustrate the technique,
an SSNM was again fit to a set of temperature mea-
surements and predictions were made at dense, 10-m
intervals along sections of stream delimited by the
upstream and downstream extent of measurements
within individual streams (Figure 7). Block-kriging
estimates of the mean temperature for each segment
were then derived by integrating across the predic-
tion sets.22,31 Comparison of the block-kriging esti-
mates to estimates based on simple random sampling
(SRS), which used the observed measurements within
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FIGURE 7 | Stream temperature estimates based on block kriging and simple random sampling that were derived from measurements recorded
across a river network in central Idaho (a). Red shading shows stream segments where mean temperatures were estimated (b). Error bars associated
with estimates are 95% confidence intervals.

each stream, showed the former to be much more
precise (Figure 7(b)). The gain in precision occurred
because block-kriging estimates incorporated infor-
mation from many prediction points and measure-
ments along the segments, whereas the SRS esti-
mates relied only on the few temperature measure-
ments. Moreover, SRS estimates in two streams with
single measurements had confidence intervals that
were essentially infinite because variance calculations
require at least two measurements.

Many powerful applications are enabled by
block kriging on stream networks. For example,
network-scale maps of water chemistry attributes
could be queried to identify those areas that exceeded
regulatory thresholds based on statistically defined
thresholds.59,60 Where those queries yielded estimates
that were insufficiently precise, power analysis (dis-
cussed in the next section) and maps of prediction pre-
cision could be used to target new measurements and
provide conclusive information. Block kriging could
also be used to standardize and improve comparisons
between reference and impacted sites61,62 so that the
magnitude and cause of differences in stream condi-
tions were better understood. Used with count data
for fish or other stream organisms, block kriging could
provide estimates of population size for entire streams
and river networks63 analogous to similar estimates
that are commonly available for wildlife populations
in terrestrial settings.58,64 That would provide biolog-
ical information more commensurate with resource
management decisions and the geographic scale of
many populations, as opposed to the restricted scales

(i.e., 10s–100s m) of traditional stream population
estimates.65,66 Block-kriging estimates could also be
developed from existing biological survey data10,67

and would be far less labor intensive than existing
techniques for censusing streams.37,68

Power Analysis with Spatial Autocorrelation
Power analysis is an important tool for developing
sampling designs and recommendations about sam-
ple sizes needed to achieve study objectives. Power
analysis can also provide information about the like-
lihood that a type II error was committed (i.e., an
effect existed but was not detected). Classical treat-
ments of the subject for ecologists,69,70 however, were
done before the widespread availability of spatial
statistical software and provide few insights regard-
ing how spatial autocorrelation affects power. Using
the temperature data from the previous block-kriging
example, an SSNM was fit to these data using pre-
dictors that consisted of elevation and stream net-
work (as a categorical effect) and a mixed-model
autocovariance function (exponential tail-up, expo-
nential tail-down, and Euclidean; Table 3). To calcu-
late the minimum detectable effect size with a power
of 0.80 (80% chance that a type II error would not
be committed), conventional probability-based power
methods assuming a normal distribution were used. A
power curve was developed across a range of eleva-
tion parameters assumed to encompass the true value
using the standard error of the elevation parameter
(0.0064) and controlling the type I error rate at 5% by
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TABLE 3 Summary Statistics for a Spatial Stream-Network Model
with a Mixed-Model Autocovariance Function Used to Predict Stream
Temperature in a Power Analysis

Predictor

Autocovariance

Function b (SE) p-value t

Intercept 64.5 (12.5) <0.01 5.16

Elevation
(∘C/10 m)

−0.0254
(0.0064)

<0.01 −3.97

Stream network
1

— NA NA

Stream network
2

−0.767
(0.833)

0.363 −0.920

Autocovariance
component

Partial sill1

(exponential
model)

tail-up 1.85

Range (km;
exponential
model)

tail-up 118

Partial sill
(exponential
model)

tail-down 0.02

Range (km;
exponential
model)

tail-down 65

Partial sill
(exponential
model)

Euclidean 0.01

Range (km;
exponential
model)

Euclidean 51

Nugget 0.01

1The partial sill is equal to the sill minus the nugget effect.

setting 𝛼 =0.05. It was then assessed how power might
change if a model with a different covariance structure
was used. To do this, the partial sill parameters in
the autocovariance function were switched between
the tail-up and tail-down models to create a model
dominated by the tail-down function (Table 3). The
temperature model was then refit with the reconfig-
ured autocovariance structure and the new standard
error estimate for elevation (0.0083) used in the same
set of power calculations described above.

Results suggest that achieving power of
0.80 required elevation parameters with absolute
magnitudes ≥0.0180∘C/10 m in the original model
and ≥0.0234∘C/10 m in the reconfigured model.
The power curve for the reconfigured model was
also shifted to the right of the original curve, which
again demonstrated that the reconfigured model had
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FIGURE 8 | Power curves for elevation regression coefficient in a
spatial stream-network model fit to temperature measurements using
different autocovariance functions.

less power (Figure 8). This simple example demon-
strates that spatial autocorrelation, and how it is
described with an autocovariance function, affects
power calculations and the probability of detecting
certain effects. Many possibilities exist to explore
this topic in more detail given a diversity of autoco-
variance functions11,41 and convenience of making
the calculations with the SSN software.31 As auto-
covariance functions are described for more stream
databases, consistencies might emerge for specific
stream attributes (e.g., pH, temperature, fish den-
sity) and network types (e.g., mountain, coastal,
desert) that could serve as a basis for generalizable
forms of power analysis to inform the design of new
studies.71

Spatial Models for Non-Normal Data
Previous examples highlighted applications of the spa-
tial models using continuous data and the Gaussian
(i.e., normal) distribution. However, the SSNMs may
also be applied to non-normal data such as counts
(Poisson distribution) or occurrences (binomial distri-
bution) through appropriate link functions.31 Com-
mon types of count data for streams include the
number of fish or macroinvertebrates within a sam-
ple area; whereas occurrence data consist of whether
a species was present at a site or whether a regulatory
threshold was exceeded. Application of the SSNMs
to occurrence data is demonstrated with 961 stream
sites surveyed for bull trout (Salvelinus confluentus)
across Idaho and Montana (Figure 9).10 Those data
were fit with nonspatial and spatial logistic regres-
sion models; the latter used a mixed-model autoco-
variance structure. Both models used the same set
of predictor variables (Table 4), which are described
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elsewhere.10 The predictive accuracy of the models
was assessed based on the area under the curve (AUC)
of the receiver–operator characteristic calculated using
leave-one-out cross-validation, and using an indepen-
dent dataset of 65 sites.72

Similar to the results in the earlier section on
parameter estimation, standard errors for the SSNM
logistic regression model were larger due to auto-
correlation among the fish survey sites (Table 4).
The predictive performance was high for both mod-
els based on AUC characteristics but the SSNM per-
formed better in both instances. In the cross-validation
assessment, the spatial structure in the residuals made
predictions near fish survey sites more accurate and
improved the AUC from 0.791 to 0.908. The per-
formance gain was less dramatic with the indepen-
dent data because nearby sites were lacking but some
improvement still occurred because parameter esti-
mates in the spatial model were more accurate. When
species distribution maps were made by applying a 0.5

probability cutoff to the model predictions, bull trout
were predicted to occur in different areas within a sub-
set of the network (Figure 9(b) and (c)).

DISCUSSION

The concept of spatial autocorrelation is relevant to
most types of data measured on stream networks
and it may affect statistical inference from many
databases. Spatial autocorrelation should no longer
be ignored now that suitable statistical techniques
and software are available. Quite the opposite, recog-
nizing and embracing spatial autocorrelation present
many exciting possibilities for developing new infor-
mation about streams and their biota. Moreover, the
common occurrence of autocorrelation in stream data
at distances of 1–100 km9,18,37 suggest that SSNMs
will often be useful tools for describing and under-
standing spatial patterns throughout river networks.
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TABLE 4 Comparison of Parameter Estimates and Summary Statistics for Nonspatial and Spatial Logistic Regression Models that Predict the
Probability of Bull Trout Occurrence at 961 Sites across Idaho and Montana

Model Predictors1 b (SE) p-value t p Cross-Validation AUC Validation AUC

Nonspatial Intercept −0.87 (0.09) p< 0.01 −9.02 5 0.791 0.702

Wtemp −0.97 (0.19) p< 0.01 −5.17

W95 −1.99 (0.29) p< 0.01 −7.34

Slope −0.37 (0.17) p= 0.09 −1.68

Vbdist 0.97 (0.15) p< 0.01 6.21

Spatial Intercept −0.23 (0.34) p= 0.52 −0.63 12 0.908 0.734

Wtemp −1.06 (0.29) p< 0.01 −3.73

W95 −0.85 (0.28) p< 0.01 −2.93

Slope −0.71 (0.17) p< 0.01 −4.14

Vbdist 0.40 (0.23) p= 0.097 1.66

1Wtemp=mean summer air temperature in watershed associated with fish survey site; W95= frequency of winter high flows; Slope= stream slope;
Vbdist=distance between survey site and nearest unconfined valley bottom area.
Source: Ref 72.

That information could help fill an important infor-
mation gap because it occurs at scales commensu-
rate with those at which population dynamics occur
and management decisions are made (e.g., within and
among streams) regarding where to allocate conser-
vation resources.73,74 Accurate information for river
networks also means that the SSNMs could provide
a useful link between broad regional phenomena and
local stream conditions. For example, two studies have
already used the SSNMs to statistically downscale the
effects of global climate change to stream thermal
patterns.8,28 The outputs from the stream models were
sufficiently accurate that local managers familiar with
the river basins rapidly adopted the information in
decision making—a dynamic that was enhanced by the
fact that the temperature measurements were obtained
from aggregated databases contributed by the man-
agement community.57 Maps of temperature predic-
tions or other stream attributes could also stimulate
better understanding of linkages between terrestrial
and aquatic environments because stream information
could then be co-registered with terrestrial conditions
at any scale rather than being limited to areas where
measurements occurred. Finally, accurate stream maps
would enable a suite of derivative analyses6,20 and
the application of many powerful techniques from the
field of spatial ecology that have seen limited use in
stream research.75,76

The ability of SSNMs to accommodate nonin-
dependence among measurements makes them power-
ful data mining tools and provides a strong incentive
for database aggregation. There are 10,000s of stream
measurements and biological surveys representing
investments of tens of millions US$10,67,77 that could
be examined to develop new information at relatively

low cost with spatial statistical techniques. If analy-
ses were done in combination with nationally avail-
able geospatial hydrography data and stream reach
predictors,78–80 consistent status and trend assess-
ments at national, regional, and local scales would
be possible.57 Such assessments are too often lacking
for stream resources, are based on small numbers of
measurements (e.g., 10s–100s of measurements), or
provide coarse information relative to what is needed
for local management and conservation decisions.5,81

Developing information from aggregated databases
presents issues related to differences in measurement
techniques,66,82 but large databases also provide users
the flexibility to apply filters based on methodological
criteria and still retain large samples for analysis. The
yield of new information from aggregated databases
makes those endeavors worthwhile and the broader
context for analysis and inference that SSNMs and
other data mining techniques provide should drive
the standardization of measurement techniques over
time.

Despite the many benefits and potential appli-
cations of SSNMs, they are not a panacea. Imple-
menting the models is more complex than traditional
statistical analyses and requires moderately advanced
skills in geographic information systems and statis-
tics, as well as familiarity with specialized software
programs (ArcGIS and R). The spatial models are
also more computationally demanding than nonspa-
tial models because the covariance matrices are com-
posed of n2 elements, which must be stored in mem-
ory and inverted during the modeling process. A
database with 100 measurements, therefore, has a
covariance matrix composed of 10,000 elements. We
have used the SSNMs with 5000+ measurements
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(matrices with 25,000,000 elements) but a single
model fit for a dataset of this size required several
hours on a modern desktop computer. Given the com-
putational challenges as stream databases continue to
grow, more efficient spatial routines like those based
on fixed-rank kriging83 may ultimately be needed.
The spatial models also have larger minimum sample
size requirements because of the additional parame-
ters that are estimated for the autocovariance func-
tion. A simple function requires two or three param-
eters, but a full mixed-model autocovariance with
tail-up, tail-down, and Euclidean components has
seven parameters.41 Those parameters are in addition
to parameters for the predictors in an SSNM, so mini-
mum sample sizes range from 50 to 100 measurements
based on the general recommendation of 10 measure-
ments for each parameter estimate.84

Current theory and SSNM applications provide
a strong, but nascent, foundation on which much
could be built. Direct analogues for most types of sta-
tistical analyses developed for terrestrial systems are
now possible that would incorporate network struc-
ture. Particularly useful would be further generalizing
model distributions to include multivariate responses
and extreme values; as well as occupancy models that
accommodate detection efficiency.85,86 The SSNMs
described here only account for spatial autocorrela-
tion, but covariance structures that simultaneously
address spatial and temporal autocorrelation87 could
be developed for streams. That would enable mod-
eling of measurements recorded continuously across
many sites as occurs often in water quality and
temperature monitoring arrays.25,28 Covariance struc-
tures could also be developed that accommodate
nonstationarity88 and spatial relationships that vary
in different parts of networks (e.g., the range of
autocorrelation could be longer in large streams than
small streams).

Not surprisingly, spatial autocorrelation has
important implications for designing aquatic mon-
itoring programs.33 Efficient sampling designs for
spatial statistical models spread measurements along
environmental gradients and include some spatial

clustering,32,71 which contrasts with traditional sam-
pling designs wherein measurements are randomly
located and/or spatially balanced.40,89,90 Moreover,
inference from traditional sampling is based on the
initial study design rather than an underlying model
as is the case with spatial techniques.58,64 An intrigu-
ing future possibility is hybrid sampling wherein tra-
ditional designs formed the core of a monitoring pro-
gram but clusters of additional measurements were
placed strategically so that the spatial autocovariance
structure could be estimated. Hybrid designs would
involve small additional costs but could diversify the
information that a monitoring program provides by
enabling both design- and model-based inferences.32,33

The simulation function contained in the SSN soft-
ware could be used to explore many sampling design
issues in detail.31

CONCLUSION

This paper was stimulated by past challenges we have
experienced with the lack of appropriate statistical
techniques for data on stream networks. Recent devel-
opment of SSNMs provides novel opportunities to
surmount many challenges but key impediments yet
remain. At the time of this writing, spatial statistical
courses for ecologists are taught at relatively few uni-
versities, and the unique issues that stream analyses
present are addressed even more rarely. That is prob-
lematic given that streams, and many issues associated
with their degradation, have inherently strong spatial
dimensions that differ fundamentally from terrestrial
systems. Our hope is that by highlighting new types
of stream analyses and accompanying software tools,
information development for these important ecosys-
tems is accelerated so that streams are better under-
stood, managed, and conserved. Readers interested in
learning more about SSNM analysis of stream data,
accessing the free software programs used for example
analyses (STARS30; SSN package for R31), or down-
loading additional datasets are encouraged to visit the
SSN/STARS website.34
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